Math 247A Lecture 14 Notes

Daniel Raban

February 7, 2020

1 The Sobolev Embedding Theorem

1.1 Fourier transforms of tempered distributions

Fix $0 < \alpha < d$, and consider

$$\int e^{-\pi t|x|^2} t^{(d-\alpha)/2} \frac{dt}{t}.$$

If we let $u = \pi |x|^2 t$, then this equals

$$\int_{0}^{\infty} e^{-u} \left(\frac{u}{\pi |x|^{2}} \right)^{(d-\alpha)/2} \frac{du}{u} = \pi^{(d-\alpha)/2} \frac{1}{|x|^{d-\alpha}} \int_{0}^{\infty} e^{-u} u^{(d-\alpha)/2} \frac{du}{u}$$
$$= \pi^{-(d-\alpha)/2} \Gamma\left(\frac{d-\alpha}{2} \right) \frac{1}{|x|^{d-\alpha}}.$$

We regard $\pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\frac{1}{|x|^{d-\alpha}}$ as a **tempered distribution**, that is an element of $\mathcal{S}'(\mathbb{R}^d)$. These are linear functionals on $\mathcal{S}(\mathbb{R}^d)$.

For $T \in \mathcal{S}'(\mathbb{R}^d)$ given by a density φ ,,

$$T(f) = \int f(x)\varphi(x) dx.$$

In our case,

$$\left(\pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\frac{1}{|x|^{d-\alpha}}\right)(f) = \pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\int \frac{f(x)}{|x|^{d-\alpha}}\,dx.$$

Since f is a Schwarz function, this integrand has the right decay at ∞ . We have

$$\left| \int \frac{f(x)}{|x|^{d-\alpha}} dx \right| \le \left| \int_{|x| \le R} \frac{f(x)}{|x|^{d-\alpha}} dx \right| + \left| \int_{|x| > R} \frac{f(x)}{|x|^{d-\alpha}} dx \right|$$
$$\lesssim ||f||_{\infty} \int \frac{1}{|x|^{d-\alpha}} dx + ||x|^d f||_{L^{\infty}} R^{-(d-\alpha)}.$$

Definition 1.1. For $T \in \mathcal{S}'(\mathbb{R}^d)$, we define its **Fourier transform** by

$$\widehat{T}(f) = T(\widehat{f}), \qquad f \in \mathcal{S}(\mathbb{R}^d).$$

Let's compute the Fourier transform of $\pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\frac{1}{|x|^{d-\alpha}}$:

$$\begin{split} \left(\pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\frac{1}{|x|^{d-\alpha}}\right)^{\wedge}(f) &= \pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\int \frac{\widehat{f}(x)}{|x|^{d-\alpha}}\,dx \\ &= \pi^{-(d-\alpha)/2}\Gamma\left(\frac{d-\alpha}{2}\right)\int\!\!\int \frac{e^{-2\pi ix\cdot\xi}}{|x|^{d-\alpha}}f(\xi)\,dx\,d\xi \\ &= \int_{0}^{\infty}\int\!\!\!\int e^{-\pi t|x|^2}t^{(d-\alpha)/2}e^{-2\pi ix\cdot\xi}f(\xi)\,dx\,d\xi\,\frac{dt}{t} \end{split}$$

We already know the Fourier transform of a Gaussian.

$$= \int_0^\infty \int \pi^{d/2} (\pi t)^{-d/2} e^{-\pi/t \cdot |\xi|^2} t^{(d-\alpha)/2} f(\xi) d\xi \frac{dt}{t}$$
$$= \int_0^\infty \int e^{-\pi/t \cdot |\xi|^2} t^{-\alpha/2} f(\xi) d\xi \frac{dt}{t}$$

Make the change of variables $u = \pi |\xi|^2 / t$.

$$\begin{split} &= \int \int_0^\infty f(\xi) e^{-u} \left(\frac{u}{\pi |\xi|^2}\right)^{\alpha/2} \frac{du}{u} d\xi \\ &= \int \pi^{-\alpha/2} \frac{1}{|\xi|^\alpha} \int_0^\infty e^{-u} u^{\alpha/2} \frac{du}{u} f(\xi) d\xi \\ &= \left[\pi^{-\alpha/2} \Gamma(\alpha/2) \frac{1}{|\xi|^\alpha}\right] (f) \end{split}$$

Remark 1.1. Take d=3 and $\alpha=2$:

$$\left(\pi^{-1/2}\Gamma(1/2)\frac{1}{|x|}\right)^{\wedge} = \pi^{-1}\Gamma(1)\frac{1}{|\xi|^2}.$$

That is,

$$\left(\frac{1}{2\pi|x|}\right)^{\wedge} = \frac{1}{4\pi^2|\xi|^2}.$$

This allows us to solve Poisson's equation: $-\Delta u = f$. If we take the Fourier transform, this is

$$4\pi^2|\xi|^2\widehat{u}(\xi) = \widehat{f}(\xi),$$

so

$$\widehat{u}(\xi) = \frac{1}{4\pi^2 |\xi|^2} \widehat{f}(\xi).$$

Taking the inverse Fourier transform, we get

$$u = \frac{1}{4\pi|x|} * f.$$

To make everything rigorous, use

• If $T \in \mathcal{S}'(\mathbb{R}^d)$ and $f \in \mathcal{S}(\mathbb{R}^d)$, then $T * f \in \mathcal{S}'(\mathbb{R}^d)$ is given by $(T * f)(g) = T(f_R * g)$, where $f_R(x) = f(-x)$:

$$(T * f)(g) = \int (\varphi * f)(x)g(x) dx$$
$$= \iint \varphi(y)f(x - y)g(x) dx dy$$
$$= T(f_R * g).$$

• If $T \in \mathcal{S}'(\mathbb{R}^d)$ and $f \in \mathcal{S}(\mathbb{R}^d)$, then $\widehat{T * f} = \widehat{T}\widehat{f}$.

1.2 Sobolev embedding

Definition 1.2. Fix s > -d and $f \in \mathcal{S}(\mathbb{R}^d)$. Then $|\nabla|^s f \in \mathcal{S}'(\mathbb{R}^d)$ is defined by its action on the Fourier side:

$$(|\nabla|^s f)^{\wedge}(\xi) = (2\pi|\xi|)^s \widehat{f}(\xi).$$

Theorem 1.1 (Sobolev embedding). For $f \in \mathcal{S}(\mathbb{R}^d)$ and 0 < s < d, we have

$$||f||_q \lesssim |||\nabla|^s f||_p$$

whenever $\frac{1}{p} = \frac{1}{q} + \frac{s}{d}$. The implicit constant is independent of f.

What does this say? It says that if s derivatives of f live in L^p , then the function must be more regular/smooth (it lives is a higher L^p space).

Proof. By duality, $||f||_q = \sup_{||g||_{T^{q'}}=1} \langle f, g \rangle$. The idea is that by Plancherel,

$$\langle f, g \rangle = \langle \widehat{f}, \widehat{g} \rangle = \langle (2\pi |\xi|)^s \widehat{f}, (2\pi |\xi|^{-s} \widehat{g}(\xi)),$$

where the first argument is in S'.

We claim that $\mathcal{F} = \{g \in \mathcal{S}'(\mathbb{R}^d) : \widehat{g} \text{ vanishes on a neighborhood of } 0\}$ is dense in $L^{q'}$. It suffices to show that \mathcal{F} is dense in $\mathcal{S}(\mathbb{R}^d)$ in the topology of $L^{q'}$. Fix $g_0 \in \mathcal{S}(\mathbb{R}^d)$. Fix $\varepsilon > 0$ and $\varphi \in C_c^{\infty}(B(0,2))$ with $\varphi \equiv 1$ on B(0,1). Define $\widehat{g_{\varepsilon}(\xi)} = \widehat{g_0(\xi)}(1 - \varphi(\xi/\varepsilon)) \in \mathcal{S}$. Then $\widehat{g_0} - \widehat{g_{\varepsilon}} = \widehat{g_0}\varphi(\cdot/\varepsilon)$, so $g_0 - g_{\varepsilon} = g_0 * \varepsilon^d \varphi^{\vee}(\varepsilon \cdot)$.

$$||g_0 - g_{\varepsilon}||_{q'} \lesssim ||g_0||_1 ||\varepsilon^d \varphi^{\vee}(\varepsilon \cdot)||_{q'}$$

$$\lesssim \|g_0\|_1 \varepsilon^{d-d/q'}$$

$$\xrightarrow{\varepsilon \to 0} 0.$$

Then

$$\begin{split} \|f\|_{q} &= \sup_{g \in \mathcal{F}: \|g\|_{q'} = 1} \langle f, g \rangle \\ &= \sup_{g \in \mathcal{F}: \|g\|_{q'} = 1} \langle \underbrace{(2\pi |\xi)^{s} \widehat{f}}_{\in \mathcal{S}'}, \underbrace{(2\pi |\xi|)^{-s} \widehat{g}}_{\in \mathcal{S}} \rangle \\ &= \sup_{g \in \mathcal{F}: \|g\|_{q'} = 1} \langle \underbrace{|\nabla|^{s} f}_{\in \mathcal{S}'}, \underbrace{|\nabla^{-s} g\rangle}_{\in \mathcal{S}} \\ &\lesssim \sup_{g \in \mathcal{F}: \|g\|_{q'} = 1} \||\nabla|^{s} f\|_{p} \cdot \||\nabla|^{-s} g\|_{p'} \end{split}$$

We have

$$|\nabla|^{-s}g = [(2\pi|\xi|) - s\widehat{g}]^{\vee} \sim \frac{1}{|x|^{d-s}} * g,$$

so

$$\||\nabla|^{-s}g\|_{p'} \sim \left\|\frac{1}{|x|^{d-s}*g}\right\|_{p'} \lesssim \|g\|_{q'}$$

by Hardy-Littlewood-Sobolev, provided $1+\frac{1}{p'}=\frac{1}{q'}+\frac{d-s}{d}$. We can rewrite this condition as $\frac{1}{p}=\frac{1}{q}=\frac{s}{d}$.