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1 The Sobolev Embedding Theorem

1.1 Fourier transforms of tempered distributions
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Fix 0 < a < d, and consider

If we let u = 7|x|*t, then this equals
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We regard 7~ (4—)/21 (d_?a) |w\‘}’“ as a tempered distribution, that is an element of

S’(R%). These are linear functionals on S(RY).
For T € S'(R%)givenby a density ¢,,

T(f) = / f(@)p(z) da.

In our case,
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Since f is a Schwarz function, this integrand has the right decay at oco. We have
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Definition 1.1. For T € S'(R?Y), we define its Fourier transform by

T(f)=T(f), feSRY.

Let’s compute the Fourier transform of 7—(4=®)/21 (d_TO‘)
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We already know the Fourier transform of a Gaussian.
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Make the change of variables u = || /t.
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Remark 1.1. Take d = 3 and a = 2:
A
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That is,
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This allows us to solve Poisson’s equation: —Awu = f. If we take the Fourier transform,
this is R
Am?le|*u(e) = (&),
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Taking the inverse Fourier transform, we get
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To make everything rigorous, use
o If T € S'(RY) and f € S(RY), then T+ f € S'(R?) is given by (T f)(9) = T(fr * g),
where fr(z) = f(—=z):

(T + )(g) = /cp*f)( )o(x) da

~ [[ st~ (e daay

=T(fr*9)-
o If T € S'(RY) and f € S(RY), then T + f = T'f.

1.2 Sobolev embedding

Definition 1.2. Fix s > —d and f € S(R?). Then |V|*f € S'(R%) is defined by its action
on the Fourier side:

(IVI°£)"©) = (2rle)*F(9)-
Theorem 1.1 (Sobolev embedding). For f € S(R?) and 0 < s < d, we have

1fllg S V£l

whenever 1 5= + 5+ The implicit constant is independent of f.

What does this say? It says that if s derivatives of f live in L?, then the function must
be more regular/smooth (it lives is a higher LP space).

Proof. By duality, [ f|lq = supy s=1 (f,g). The idea is that by Plancherel,
L

~

(£,9) = (F,8) = ((2r|&])* F, (27€7*5(£),

where the first argument is in S’.
We claim that F = {g € S'(R?) : § vanishes on a neighborhood of 0} is dense in LY.
It suffices to show that F is dense in S(R?) in the topology of LY. Fix gy € S(RY). Fix

e >0and p € CX(B(0,2)) with ¢ =1 on B(0,1). Define g-(§) = gg(z)(l —p/e) e S
Then g. € F. Then go — g= = gop(:/€), S0 go — ge = go * 5d<pv(5 ).
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< lgoll1e®
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Then
[fllq=sup  (f,9)
gEF:||glly=1
= sup ((27[§)°f, (27[¢])°g)
geFgll =1 e e
es! €s
= sup (|V|°f,[V %)
geFgll =1~ =
cs es
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We have !
IV|~*g = [(2n|¢])—sg]" ~ s * g,
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by Hardy-Littlewood-Sobolev, provided 1 + ]% =14 %. We can rewrite this condition
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as =, = 4
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